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Abstract: Unlike other natural disasters, drought events evolve slowly in time and their impacts
generally span a long period of time. Such features do make possible a more effective
mitigation of the most adverse effects, provided a timely monitoring of an incoming
drought is available

Among the several proposed drought monitoring indices, the Standardized Precipitation
Index (SPI) has found widespread application for describing and comparing droughts
among different time periods and regions with different climatic conditions. However,
limited efforts have been made to analyze the role of the SPI for drought forecasting

The aim of the chapter is to provide two methodologies for the seasonal forecasting of
SPI. In the first methodology, the transition probabilities from a current drought condition
to another in the future, and from a single value of current SPI to a drought class are
derived as functions of the statistics of the underlying monthly precipitation process.
The proposed analytical approach appears particularly valuable from a practical stand
point in light of the difficulties of applying a frequency approach or a Markov chain
approach, due to the limited number of transitions generally observed even on relatively
long SPI records. In the second methodology, SPI forecasts at a generic time horizon M
are analytically determined, in terms of conditional expectation, as a function of a finite
number of past values of monthly precipitation. Forecasting accuracy is estimated through
an expression of the Mean Square Error, which enables to derive confidence intervals of
prediction. Validation of the derived expressions is carried out by comparing theoretical
forecasts and observed SPI values. The methodologies have been applied to the series of
SPI, based on monthly precipitation observed in Sicily over 40 rain gauges in the period
1921-2003. Results seem to confirm the reliability of the proposed methodologies, which
therefore can find useful application within a drought monitoring system
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1. INTRODUCTION

Due to a slow evolution in time, drought is a phenomenon whose consequences take
a significant amount of time with respect to its inception in order to be perceived
by the socio-economic systems. Taking advantage of this feature, an effective
mitigation of the most adverse drought impacts is possible, more than in the case
of other extreme hydrological events such as floods, earthquakes, hurricanes, etc.,
provided a drought monitoring system, able to promptly warn of the onset of a
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drought and to follow its evolution in space and time, is in operation (Rossi, 2003).
To this end, an accurate selection of indices for drought identification, providing
a synthetic and objective description of drought conditions, represents a key point
for the implementation of an efficient drought watch system.

Among the several proposed indices for drought monitoring, the Standardized
Precipitation Index (SPI) has found widespread application (McKee et al., 1993;
Heim, 2000; Wilhite et al., 2000; Rossi and Cancelliere, 2002). Guttman (1998) and
Hayes et al. (1999) compared SPI with Palmer Drought Severity Index (PDSI) and
concluded that the SPI has advantages of statistical consistency, and the ability to
describe both short-term and long-term drought impacts through the different time
scales of precipitation anomalies. Also, due to its intrinsic probabilistic nature, the
SPI is the ideal candidate for carrying out drought risk analysis (Guttman, 1999).
An evaluation of common indicators, according to six weighted evaluation criteria
of performance (robustness, tractability, transparency, sophistication, extendability,
and dimensionality), indicates strengths of the SPI and Deciles over the PDSI
(Keyantash and Dracup, 2002).

Although most of the proposed indices have been developed with the intent
to monitor current drought conditions, nevertheless some of them can be used to
forecast the possible evolution of an ongoing drought, in order to adopt appropriate
mitigation measures and drought policies for water resources management. Within
this framework, Karl et al. (1986) assessed the amount of precipitation needed
to restore normal conditions after a drought event, with reference to the Palmer
Hydrologic Drought Index (PHDI). Cancelliere et al. (1996) proposed a procedure
for short-middle term forecasting of the Palmer Index and tested its applicability
to Mediterranean regions, by computing the probability that an ongoing drought
will end in the following months. Other authors (Lohani et al., 1998) proposed a
forecasting procedure of the Palmer index based on the first-order Markov chains,
which enables one to forecast drought conditions for future months, based on the
current drought class described by the PHDI values. Recently, Bordi et al. (2005)
compared two stochastic techniques, namely an autoregressive model and a novel
method called Gamma Highest Probability (GAHP), for forecasting SPI series at
lag 1. The latter method forecasts precipitation of the next month as the mode of a
Gamma distribution fitted to the observed precipitation series. They concluded that
the GAHP performs better, especially in spring and summer months.

In the present chapter, a seasonal forecast of the SPI is addressed by means of
stochastic techniques. In particular, transition probabilities from a drought class to
another and from a current value of SPI to a drought class at different time horizons
are analytically derived as a function of the statistical properties of the underlying
monthly precipitation. The usefulness of such analytical derivation for estimating
transition probabilities is evident in light of the fact that a Markov chain approach
appears not adequate to model transitions of SPI values (Cancelliere et al., 2007).
Moreover the analytical approach enables one to overcome the difficulties related
to a frequency approach, whose reliability may be hindered by the generally limited
sample size of the available precipitation series.
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Also a model to evaluate SPI forecast on the basis of past values of precipitation
has been developed. More specifically, analytical expressions of short-middle term
forecasts of the SPI are derived as the expectation of future SPI values conditioned
on a finite number of past observations. The accuracy of the model is evaluated in
terms of the Mean Square Error (MSE) of prediction (Brockwell and Davis, 1996),
which allows confidence intervals for forecasted values to be computed. Forecasting
future values in terms of conditional expectation ensures that the corresponding
forecasts will have minimum MSE. Validation of the model is carried out based on
the historical series observed at 40 precipitation stations in Sicily (Italy), making
use of a moving window scheme for parameters estimation.

2. THE STANDARDIZED PRECIPITATION INDEX

The SPI is able to take into account the different time scales at which the drought
phenomenon occurs and, because of its standardization, is particularly suited to
compare drought conditions among different time periods and regions with different
climatic conditions (Bonaccorso et al., 2003).

The index is based on an equi-probability transformation of aggregated monthly
precipitation into a standard normal variable. In practice, computation of the index
requires fitting a probability distribution to aggregated monthly precipitation series
(e.g. k = 3, 6, 12, 24 months, etc.), computing the non-exceedence probability
related to such aggregated values and defining the corresponding standard normal
quantile as the SPI. McKee et al. (1993) assumed an aggregated precipitation gamma
distributed and used a maximum likelihood method to estimate the parameters of
the distribution.

Although McKee et al. (1993) originally proposed a classification restricted only
to drought periods, it has become customary to use the index to classify wet periods
as well. Table 1 reports the climatic classification according to the SPI, provided by
the National Drought Mitigation Center (NDMC, http://drought.unl. edu). Also, the
probabilities �P, that the index lies within each class are listed. Since our present
work focuses on forecasting drought conditions, the near normal and wet classes
have been grouped into one class termed “Non-drought”.

Table 1. Wet and drought period classification according to the SPI index

Index value Class Probability �P

SPI ≥ 2�00 Extremely wet 0.977-1.000 0.023
⎫
⎪⎪⎬

⎪⎪⎭
Non Drought

1�50 ≤ SPI < 2�00 Very wet 0.933-0.977 0.044
1�00 ≤ SPI < 1�50 Moderately wet 0.841-0.933 0.092
−1�00 ≤ SPI < 1�00 Near normal 0.159-0.841 0.682
−1�50 ≤ SPI < −1�00 Moderate drought 0.067-0.159 0.092
−2�00 ≤ SPI < −1�50 Severe drought 0.023-0.067 0.044
SPI < −2�00 Extreme drought 0.000-0.023 0.023
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3. ANALYTICAL DERIVATION OF TRANSITION
PROBABILITIES OF DROUGHT CLASSES

3.1 Transition Probabilities From A Drought Class to Another

Let Z�k�
��� indicate the SPI value at year � and month � = 1� 2� � � � 12, for an aggre-

gation time scale k of monthly precipitation. Also, let’s indicate by Ci the generic
drought class, for instance C1 = Extreme, C2 = Severe, C3 = Moderate, C4 = Non-
drought. The probability that the SPI value after M months lies within a class Cj

given that the SPI value at the current month lies within a class Ci, can be expressed
as (Mood et al., 1974):

P
[
Z

�k�
���+M ∈ Cj

∣
∣Z�k�

��� ∈ Ci

]
=
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Ci�Cj
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where fZ�k�
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�·� is the joint density function of Z�k�
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marginal density function of Z�k�
��� , t and s are integration dummy variables, and the

integrals are extended to the range of each drought class.
Since, by definition, SPI is marginally distributed as a standard normal variable,

it is fair to assume the joint density function in eq. (1) to be bivariate normal, namely:
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Thus, the computation of transition probabilities in eq. (1) requires the determi-
nation of the autocovariance at lag M of Z

�k�
���+M namely cov

[
Z�k�

����Z
�k�
���+M

]
. Such

autocovariance can be efficiently estimated from an available sample of SPI series.
Alternatively, under some hypothesis, it is possible to derive analytical expression
of the autocovariance SPI, as a function of the statistics of the underlying precip-
itation. In general terms, such derivation is not straightforward, because of the
equi-probability transformation underlying the SPI computation. However, under the
hypothesis of monthly precipitation aggregated at time scale k normally distributed,
the corresponding value of SPI can be computed through a simple standardization
procedure:

Z�k�
��� = Y �k�

��� −��k�
�

�
�k�
�

(4)

with Y �k�
��� = k−1∑

i=0
X���−i aggregated precipitation at k months.
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By assuming precipitation at month � with mean �� , the mean of the corre-
sponding aggregated precipitation Y �k�

��� will be:

��k�
� =

k−1∑

i=0

��−i (5a)

Also, if �2
� is the variance of precipitation at month �, under the hypothesis of

precipitation values uncorrelated in time, the standard deviation of the corresponding
aggregated precipitation Y �k�

��� will be:

��k�
� =

√
√
√k−1∑

i=0

�2
�−i�x� (5b)

Substituting, eq. (4) becomes:
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Therefore, the autocovariance can be expressed as:
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By substituting eq. (7) in the variance-covariance matrix �, it follows:
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(8)

Finally, by combining eq. (8) with eqs. (1) and (2), it is possible to express
the SPI transition probabilities, in terms of the variances of monthly precipitation.
Although the hypothesis of normality for aggregated monthly precipitation may
appear restrictive, it is worth observing that it can be justified, especially for higher
values of the aggregation time scale k, as a consequence of the central limit theorem.
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3.2 Transition Probabilities from a Spi Value to a Drought Class

Eq. (1) enables to derive transition probabilities from one drought class to another
in the future. One may expect however, that such probability should somewhat
be affected by the value taken by SPI, and not just by the class it is laying in.
For instance, transition toward Non drought class (SPI ≥ –1) from a moderate
class (–1.5 < SPI < –1) should be more or less probable depending whether the
observed SPI is closer to the class upper bound or to the class lower bound. Thus,
it is of interest to derive an analytical expression in order to calculate the transition
probabilities from a single value of SPI to a drought class in the future. The latter
approach enables, with respect to the previous one, to take into account the influence
of the specific past values on the forecasts.

Let’s consider the random variable defined as:

Z = Z���+M

∣
∣Z���

According to the definition of SPI, the variables Z��� e Z���+M are distributed
as a normal distribution with zero mean and variance one; therefore, according to
a well known statistical property of multivariate normal distributions, it is fair to
assume Z as a conditional bivariate normal distribution, with mean and variance
(Mood et al., 1974):

�Z = �Z���+M
+
(
� ·�Z���+M

/
�Z���

)(
z��� −�Z���

)
= � · z��� (9)

�2
Z = �2

Z���+M

(
1−�2

)= 1−�2 (10)

where � can be calculated either directly by the observed series (correlation coeffi-
cient between SPI series at the present month � and at month �+M) or exploiting
the previous equation (7) found for the autocovariance.

It follows that the transition probability to pass from a value of SPI Z0 at the
month �, to a class of drought C0, M months ahead, will be given by:

PZ���+M ∈ C0

∣
∣Z��� = z��� � =

C0s∫
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1√
2��Z

· e− 1
2

(
x−�z���

1−�2

)2

dx (11)

where Coi e Cos are respectively the lower and the upper bounds of the particular
drought class C0 considered.

Despite the apparent complexity of the proposed analytical approach for
estimation of transition probabilities, it should be pointed out that the methodology
yields results that can be considered in general more reliable than those obtained
by alternative approaches, such as frequency analysis of observed transitions in an
historical sample, or application of a Markov chain scheme (Cancelliere et al., 2007).
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4. SPI FORECASTING

From a stochastic point of view, the problem of forecasting future values of a random
variable is equivalent to the determination of the probability density function of
future values conditioned by past observations. Once the conditional distribution is
known, the forecast is usually defined as the expected value or a quantile of such
distribution, and confidence intervals of the forecast values can be computed.

Let’s consider a sequence of random variables Y1, Y2, � � �, Yt. The interest here
lies in determining a function f(Y1, Y2,� � �,Yt� that forecasts a future value Yt+M with
minimum error. The latter is usually expressed as the Mean Square Error (MSE) of
prediction, defined as (Brockwell and Davis, 1996):

MSE = E�Yt+M − f�Y1� Y2� � � � � Yt��
2� (12)

It can be shown, that the function f(·) that minimizes the MSE is the expected value
of Yt+M conditioned on Y1, Y2, · · · , Yt, i.e.:

f�Y1� Y2� � � � � Yt� = EYt+M �Y1� Y2� � � � � Yt� (13)

The above property enables to derive the “best” forecast (in MSE sense), provided
the conditional expectation can be computed. Also, it may be worthwhile to note
that if Yt+M is independent of Y1, Y2, · · · , Yt, the best predictor of Yt+M is its expected
value, and furthermore, the MSE of prediction is just the variance of Yt+M .

Besides MSE, a practical way of quantifying the accuracy of the forecast is by
estimating the confidence interval of prediction, i.e. an interval that contains the
future observed value with a fixed probability 1–� (e.g. 95 %). Obviously, the wider
the interval, the less is the accuracy of the forecast and vice-versa. Confidence
intervals of prediction for SPI can be estimated by capitalizing on the intrinsic
normality of the index and by observing that, since the predictor is unbiased, its
variance coincides with the MSE. Thus, the upper and lower confidence limits Y1�2

of fixed probability 1– � can be computed as:

Y1�2 = Ỹ ±√
MSE ·u

1−�/2
(14)

where, for the sake of brevity, Ỹ represents the generic forecast and u(·� is the
quantile of a standard normal (random) variable of probability 1–�/2.

Let’s define Z�k�
��� as the SPI value at year � and month � = 1� 2� � � � � 12, for

an aggregation time scale k of monthly precipitation. The interest here lies in
determining the conditional distribution (and its expectation) of a future value
M months ahead Z1 = Z

�k�
���+M , conditioned on the vector of � past observations

Z2 =
[
Z�k�

����Z
�k�
���−1� � � �Z

�k�
���−�+1

]T

, i.e. the distribution of the following conditioned
variable:

Z1�2 = Z
�k�
���+M

∣
∣
∣Z�k�

����Z
�k�
���−1� � � �Z

�k�
���−�+1
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The conditional density function of Z1�2 is defined as:

fZ1�2

(
z1�2
)= fZ �z�

fZ2
�z2�

(15)

where fZ�z� is the multivariate pdf of the random vector Z =
[
Z�k�

���+M�Z�k�
��� �

Z
�k�
���−1� � � �Z

�k�
���−�+1

]T

and fZ2�z2� is the joint density function of Z2.
As already mentioned, since, by definition, the SPI is marginally distributed as a

standard normal variable, it is fair to assume that the vector Z is multivariate normal
with zero mean and variance-covariance matrix �. The latter can be partitioned as
follows:

� =
[

�11 �12

�21 �22

]

(16)

where:

�11 = Var Z1� = 1 (17)

�12 = �T
21 = Cov Z1� Z2� (18)

According to the property shown before, the conditional density function of Z1�2 is
normal itself. Besides, reminding that the SPI has zero mean, it can be shown that
the expected value of Z1�2 is (Kotz et al., 2000):

E
[
Z1�2

]= �12 ·�−1
22 · z (19)

where z =
[
z�k�

���� z
�k�
���−1� � � � z

�k�
���−�+1

]T
is the vector of past observations. Equation (19)

yields the best forecast (in MSE sense) of a future value Z̃
�k�
���+M given � past

observations z =
[
z�k�

���� z
�k�
���−1� � � � z

�k�
���−�+1

]T

. Furthermore, it is easy to see that the
above forecast is unbiased and therefore the Mean Square Error of forecast coincides
with the variance of Z1�2, which is given by (Kotz et al. 2000):

MSE = Var
[
Z1�2

]= 1−�12 ·�−1
22 ·�21 (20)

Obviously, if Z
�k�
���+M is uncorrelated with Z�k�

����Z
�k�
���−1� � � � �Z

�k�
���−�, the best forecast

of Z
�k�
���+M is its expected value, and furthermore, the MSE of prediction is just the

variance of Z
�k�
���+M .

If � = 1, i.e. the forecast is based only on the present value, eq. (19) simplifies as:

Z̃
�k�
���+M = E

[
Z

�k�
���+M �Z�k�

��� = z�k�
���

]
= � · z�k�

��� (21)
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while the Mean Square Error becomes:

MSE = Var
[
Z

�k�
���+M

∣
∣Z�k�

��� = z�k�
���

]
= 1−�2 (22)

where � is the correlation coefficient between Z�k�
��� and Z

�k�
���+M .

5. APPLICATIONS TO PRECIPITATION SERIES
OBSERVED IN SICILY

The proposed methodologies have been applied to monthly precipitation observed
from 1921 until 2003, for 40 precipitation stations in Sicily. The selected
stations are included in the drought monitoring bulletin published on the web-
site of the Sicilian Regional Hydrographic Office (Rossi and Cancelliere, 2002,
http://www.uirsicilia.it).

5.1 Evaluation of Transition Probabilities

By fixing several combinations of forecasting time horizon M (months) and
aggregation time scales k, for each station the transition probabilities from a class
of SPI at month � to another one at month � +M have been computed by eq. (1),
for every month. In order to compute the double integral in eq. (1), which expresses
the normal joint cdf (cumulative distribution function), the algorithm MULNOR
has been adopted (Schervish, 1984).

The mean values of transition probabilities corresponding to the 40 stations, for
M = 6 and k = 24, are presented in Figure 1, as a function of the current month �.
In particular, transition probabilities related to different combinations of initial and
final drought conditions (extreme Ex, severe Se, moderate Mo, non-drought N) have
been considered. In order to show also the variability of transition probability among
different stations, in the same plots, the limits related to ±1 standard deviation
are indicated by dashed lines. It can be observed that transition probabilities vary
from one month to another, and for some transitions, also from one station to
another (as indicated by the width of the limits). In particular, the mean probability
value, indicated by the continuous line, of remaining in the extreme class (Ex/Ex)
ranges from 60% (for February-March) to less than 25% (for August-September).
The mean probability value of remaining in the non-drought class (N/N) presents
a limited variability across the months, since it ranges from 95% (for February-
March) to about 90% (for August-September). The transition probabilities from one
class to another, especially in the lower triangular part of the matrix constituted by
the graphics, are very low, at least for the considered time horizon, namely M = 6
months. In general, it can be concluded that starting from a wet month there is
an higher probability to remain in the same drought class M months ahead (plots
along the diagonal), than when starting from dry months, and conversely a lower
probability to return to normal conditions.



92 CANCELLIERE ET AL.

Figure 1. Mean of transition probabilities (continuous line) for M = 6 and k = 24 computed on 40
stations, and limits corresponding to ±1 standard deviation (dashed line)

Such different behavior can be justified by considering that starting from a wet
month and considering a 6 months time horizon, the occurrence probability of
precipitation events, able to restore normal conditions, is very low. On the contrary,
starting from a dry month, there is a high chance to observe values of precipitation
such to modify drought conditions during the next 6 months.

In order to analyze the effects of the aggregation time scale k and of the
forecasting time horizon M , transition probabilities computed for the 40 stations
have been averaged and represented on a 3D-plot for a specific starting month and
class, as a function of the final class and of the M values. In Figure 2 the case
corresponding to extreme drought as starting class, August as starting month and

Figure 2. Mean transition probabilities (computed on the 40 stations) as a function of forecasting time
horizon M (starting class: extreme drought (Ex), starting month: August)
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Figure 3. Mean transition probabilities (computed on the 40 stations) as a function of forecasting time
horizon M (starting class: extreme drought (Ex), starting month: February)

k = 6, 12 and 24 are illustrated. In Figure 3 similar 3D-plots for February as starting
month are shown.

It can be seen that probabilities to remain in the same class generally decrease
as the forecasting time horizon M increases, while transition probabilities to non-
drought condition show an opposite behaviour. Further, as the aggregation time
scale k increases, the probabilities of remaining in the same class increase, whereas
transition probabilities to return to non-drought condition generally decrease.
Finally, by comparing transition probabilities related to August to those corre-
sponding to February, it can be inferred that it is generally easier to recover from
drought conditions starting from August than starting from February.

When the interest turns to the computation of transition probabilities from one
value of current SPI to a drought class in the future, equation (11) is applied. In
particular, by fixing the starting month �, the aggregation time scale k (3, 6, 9,
12 and 24 months), the time horizon M (1, 3, 6, 9, 12 and 24 months) and the
drought class C0 in the future, it is possible to derive the corresponding transition
probabilities for different current SPI values z� .

Figure 4 and Figure 5 illustrate the mean transition probabilities to different
drought classes (Ex, Se, Mo, N) as a function of current SPI value, computed based
on the precipitation series of the considered 40 stations. For the sake of clarity,
only the portion of the plots corresponding to –3 ≤ Z� ≤ 0 have been plotted.
Besides, each application is performed with reference to two starting months,
namely: February and August.

More specifically, in Figure 4 transition probabilities parametrized with respect
to different time horizons M (1, 3, 6 months) are reported for an aggregation time
scale k=9 months. Figure 5 shows the transition probabilities corresponding to the
aggregation time scale k (9, 12, 24 months), for a fixed time horizon M=6 months.

From both figures it is possible to infer similar results to those previously obtained
for the transition probability from one class to another. In fact, the probability to
remain in the same class decreases as the forecasting time horizon M increases, while
transition probabilities to non-drought condition show an opposite behaviour. For
instance, from the first plots at the left hand side in Figure 4, representing the transi-
tions to a drought class Extreme, it can be clearly observed that for a current extremely
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Figure 4. Mean transition probabilities (computed on the 40 stations) from the starting SPI Z� to a
drought class Ci 1 month ahead (column), as a function of forecasting horizon time M (starting months:
February, August – rows; aggregation scale k=9 months)

Figure 5. Mean transition probabilities (computed on the 40 stations) from the starting SPI Z� to a
drought class Ci (column), as a function of aggregation scale k (starting months: February, August–rows)
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dry condition, namely SPI< −2, the probabilities decrease as M increases, while
for all the other hydrometeorological conditions, namely SPI> −2, the probabilities
increase as M increases, even if in this case such values are very low (less than ∼ 0.20).

On the contrary, from the last plots at the right hand side, representing the transi-
tions to a Normal condition, it can observed that, as M increases, the probabilities
increase for SPI< −1 and decrease for SPI> −1.

Figure 5 shows the influence of the aggregation time scale k on the transition
probabilities for M = 6 month. In particular, as it was expected, it can be noticed a
general increase of the probabilities to remain in the same class and a decrease of
transition probabilities to different classes, as k increases.

From both figures, it is worth pointing out that transition probabilities are almost
independent of M and k, for current values of SPI close to the lower limits of the
future classes of transition.

Another important result consists in the high variability of the transition proba-
bilities within the same starting class. In Figure 4, for example, the probability to
pass to a Non drought condition 1 month ahead with aggregation scale 9 months
starting from August (2nd row, 4th column, line marked by triangles) increases
from the value 20% for Z� = −1�5 to the value 70% for Z� = −1, a considerable
difference within the same starting Moderate class. Else by considering Figure 5, the
probability to remain in Severe conditions 6 months ahead with aggregation scale
24 months starting from February (1st row, 2nd column, line marked by circles)
decreases from the value 80% for Z� = −2 to the value 20% for Z� = −1�5.

In order to emphasize this feature, in Figure 6 transition probabilities for two
different values of SPI inside the same drought class, namely Z� = −2�95 and -2.05,

Figure 6. Mean transition probabilities (computed on the 40 stations) as a function of forecasting time
horizon M and drought class Ci (starting SPI: −2.95 on the first row, −2.05 on the second row; starting
month: February)
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are shown. In particular, the three-dimensional graphics represent the variability of
transition probabilities (z-axis) versus the time horizon M (x-axis) and the drought
class Ci (y-axis) for different aggregation time scale k and by fixing February as
starting month. For instance, for an aggregation time scale k = 12 months and a
horizon time M = 9 months, it is possible to note how the probability to pass to non-
drought condition increases from the value 35% for Z� = −2�95 to the value 60% for
Z� = −2�05, as it was easily expected, since the second condition is less extreme than
the other. Same features can be obtained for other time scales and time horizons.

5.2 SPI Forecast

The forecasting models proposed has been applied by considering several aggre-
gation time scales, k = 6, 9, 12 and 24 months, as well as different forecasting time
horizons M = 3, 6, 9 and 12 months.

First, theoretical MSE values (see eq. (20)) have been computed for all the 40
stations. In particular, for each available series, SPI values have been calculated
and the variance- covariance matrix � (eq. (16)) has been estimated by means of
its sample counterpart for fixed �� k � and M .

Figure 7 illustrates the boxplots of monthly MSE values for different initial
month as a function of the number of past observations � adopted to compute the
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Figure 7. Boxplots of MSE of forecast as a function of the number of past observations � for different
initial month (by considering k=6 and M=3)
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forecast. MSE have been computed considering an aggregation time scale k = 6
and a forecasting time horizon M = 3 months. The overall height of each boxplot
indicates the variability of MSE among the different stations. As expected, the
performance of the forecasting model generally improves (lower MSE’s) as a larger
number of past observations is adopted, although the decrease of MSE exhibits a
different behaviour according to the considered initial month.

This reflects the intrinsic seasonality in the autocovariance function of SPI, as
pointed out by Cancelliere et al., (2005). From the plots, it can be inferred that no
significant improvement in the performance of the forecast are obtained for � >7
in all cases, and therefore such a value seems to be preferable. Results related to
different combinations of k and M (here not shown for brevity), lead to similar
conclusions and therefore � = 7 has been adopted in what follows.

Then, the forecasting model has been validated by comparing observed and
forecasted SPI computed by eq. (19) during the period 1921–2003. As an example,
Figure 8 shows the comparison between observed and forecasted values SPI for
one of the 40 stations, namely Caltanissetta, for different combinations of the time
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Figure 8. Comparison between observed and forecasted SPI for Caltanissetta station and related 95%
confidence limits for different aggregation time scales k



98 CANCELLIERE ET AL.

scales k and M = 3 months. On the same plots, 95% confidence intervals, estimated
by means of eq. (14) are also shown.

From the figure it can be inferred a fairly good agreement between observed and
forecasted SPI values as is also evident from the fact that almost all of the observed
values lie within the confidence limits. As expected, the accuracy of the forecast
decreases as larger k are adopted with respect to the fixed M .

6. CONCLUSIONS

Drought monitoring and forecasting are essential tools for implementing appropriate
mitigation measures in order to reduce negative drought impacts. Knowledge of
transition probabilities from a drought class to another, for a given site or region, as
well as the availability of forecasts of drought indices, and of the related confidence
intervals, can help to improve the decision making process for drought mitigation,
since appropriate measures can be selected based on the risk associated with the
possible evolution of a current drought condition.

In the chapter, stochastic methodologies (i) to compute drought transition proba-
bilities (from one class to another and from a current SPI value to a drought class),
and (ii) to forecast future SPI values on the basis of past precipitation, are presented.
Analytical expressions of the Mean Square Error of prediction are also presented,
which enables one to derive confidence intervals for the forecasted values.

The effects of the aggregation time scale k and of the forecasting time horizon
M on transition probabilities have been analyzed for 40 stations, by fixing the
starting month and class, as a function of the final class and of the M values.
Also, an analysis done by fixing the starting value of SPI, shows the importance
of considering a current value of SPI rather than a class in the calculation of
transition probabilities. In fact the transition probabilities are strongly affected by
the value taken by the SPI within the same starting class. Thus taking into account
the starting value rather than the starting class leads to a significant improvement
in the identification of most probable drought classes in the future.

The proposed methods to compute transition probabilities is particularly valuable
from a practical standpoint, in light of the difficulties of applying a frequency
approach due to the limited number of transitions generally observed even on
relatively long SPI records. In fact, the number of observed transitions is generally
not sufficient to compute reliable frequency estimates. Furthermore, the lack of
observed transitions in some cases would lead to the misleading conclusion that
such transitions have zero occurrence probability, which is obviously not correct.
Application of the analytical approach on the other hand, allows one to always
estimate transition probabilities, even from relatively short records, since the whole
available precipitation series, and not just the few observed transitions, are utilized.
Regarding the applicability of Markov chain hypothesis to model transitions of
SPI values from one drought class to another, Cancelliere et al. (2007) have also
demonstrated that such an assumption may not be valid in general.
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Validation of the forecasting model has been carried out by comparing SPI
values computed on precipitation observed in the same 40 stations in Sicily and
the corresponding forecasts. The results show a fairly good agreement between
observations and forecasts, as it has also been confirmed by the values of some
performance indices, which indicates the suitability of the model for short- medium
term forecast of drought conditions.

Ongoing research is being carried out to improve the forecasting capabilities
of the model, by taking into account exogenous covariates such as large scale
climatic indices.
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